National Repository of Grey Literature 23 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Optimization of traffic engineering problems
Le, Huy ; Hošek, Jaromír (referee) ; Hrabec, Dušan (advisor)
This bachelor thesis focuses on optimization of traffic light control of intersection, more specifically looks for optimal minimal signal plan of intersection considering given requirements. Theoretical part is about suppositions and basic definitions, after that usable algorithms for this problem are described in details. Practical part deals with application of these algorithms on specific example of intersection and compares obtained results afterwards.
Spectroscopic Study of the Dynamical Behavior and Interactions in Supramolecular and Macromolecular Systems
Radecki, Marek ; Hanyková, Lenka (advisor) ; Matějka, Libor (referee) ; Kronek, Juraj (referee)
Title: Spectroscopic Study of the Dynamical Behavior and Interactions in Supramolecular and Macromolecular Systems Author: Marek Radecki Department: Department of Macromolecular Physics Supervisor: Doc. RNDr. Lenka Hanyková, Dr., Department of Macromolecular Physics Abstract: In this thesis, the temperature-induced phase transition in liner polymer solutins and hydrogels of semi-interpenetrating (SIPNs) and interpenetrating (IPNs) polymer networks was studied with respect to various composition, network architecture and procedure. Thermoresponsive linear polymers based on poly(vinyl methyl ether) (PVME) in water and with terc-buthyl based additives, IPNs of polyacrylamide (PAAm), poly(N -isopropylacrylamide) (PNIPAm), poly(N - vinylcaprolactam) (PVCL) and IPNs and SIPNs of poly(N,N -diethylacrylamide) (PDEAAm) were investigated by the methods of nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), optical microscopy (OM) and swelling experiments. The effect of polymer concentration and presence of additives on the dynamics during the phase separation as well as interactions between the water and the polymer in aqueous solutions of PVME and PVME/additives were established. The increasing content of hydrophilic PAAm component in SIPNs and IPNs shifts the transition toward...
Tunable materials and structures for terahertz spectral range
Skoromets, Volodymyr ; Kužel, Petr (advisor) ; Hlídek, Pavel (referee) ; Pashkin, Alexei (referee)
This thesis is devoted to an experimental study of dielectric properties of incipient fer- roelectrics. The terahertz time-domain spectroscopy was used to investigate the complex permittivity spectra in both single crystals and various strained thin film structures versus temperature and applied electric bias. Namely, it allowed characterizing the ferroelectric soft-mode dynamics and its coupling to a central mode. An electric-field tunability of bulk single crystals of SrTiO3 was determined up to room temperature for the first time. The phenomenon is governed by soft-mode stiffening under applied field. As an application we proposed and characterized a tunable one-dimensional photonic structure with a thin SrTiO3 plate inserted as a defect layer. The importance of the soft-mode dynamics was stressed also in the study of bulk high density KTaO3 ceramics. A systematic study was performed of a KTaO3 thin film and especially of a set of strained multilayers consisting of SrTiO3/DyScO3 bilayers grown on DyScO3 substrate. Strain-induced ferroelectric transition was observed in these films governed by the soft mode coupled to a lower-frequency relaxation. A general model was developed describing the whole family of the studied samples. Effect of the composition stoichiometry of SrTiO3 films grown on DyScO3 was...
Quantal and thermal phase transitions in atomic nuclei
Dvořák, Martin ; Cejnar, Pavel (advisor) ; Knapp, František (referee)
In this bachelor work phase transitions in atomic nuclei are studied. The main attention is paid to quantal phase transitions between nuclear ground states of different symmetry. First, the interacting boson model in its simplest version, IBM-1, is introduced. The correspondence between the IBM and the geometric model of nuclei is indicated and possible shapes of the nucleus in the ground state are introduced. In the next step, critical and degenerated critical points of the potential derived from the IBM-1 are investigated in detail, especially their dependence on parameter values of the potential. Degenerated critical points are classified using the catastrophe theory. The special values of potential parameters are found for which phase transitions of the first and second order occur. Finally, the possibility of substitution of the potential by canonical catastrophic functions in a vicinity of degenerated critical points is discussed.
PFM and Raman spectroscopy of selected dielectric materials
Borodavka, Fedir ; Gregora, Ivan (advisor) ; Baumruk, Vladimír (referee) ; Hehlen, Bernard (referee)
Title: PFM and Raman spectroscopy of selected dielectric materials Author: Fedir Borodavka Institute: Department of Dielectrics, Institute of Physics of the Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic Supervisor: Ing. Ivan Gregora, CSc. Training institute: Department of Dielectrics, Institute of Physics of the Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic Consultants: RNDr. Stanislav Kamba, CSc. and RNDr. Vladimír Vorlíček, CSc. Abstract: The thesis is devoted to a detailed investigation of dielectric materials using Raman spectroscopy and PFM microscopy techniques. Phonon properties of a newly synthesized guanylurea(1+) hydrogen phosphite single crystals have been studied. A tentative assignment of the observed Raman peaks has been done and the sets of A′ MIX, A′ TO and A′′ TO mode frequencies have been determined. Phonon behaviour of BiMnO3 ceramics, obtained from Raman spectra, has been char- acterized. After comparing the factor group analysis with the Raman spectra it has been concluded that the material has a centrosymmetric C2/c structure and is not ferroelectric. Lattice modes of the complex La1/2Na1/2TiO3 single crystal have been investigated. We have numerically analysed the intensity behaviour of the sharp peak at 455 cm−1 on heating and...
Interactions in solutions and gels of stimuli-responsive polymer systems investigated by NMR spectroscopy
Konefał, Rafał ; Spěváček, Jiří (advisor) ; Hrabal, Richard (referee) ; Štěpánek, Miroslav (referee)
Stimuli-responsive (stimuli-sensitive, intelligent, or smart) polymers are polymer materials which, after small external stimuli, evidently change their physical or chemical properties. Smart polymers can be classified according stimuli they respond to such as: temperature changes, mechanical stress, light irradiation, ultrasonic treatment, application of external magnetic as well as electric field, changes of pH, ionic strength, addition of the chemical agents and presence of biomolecules and bioactive molecules. Stimuli-responsive synthetic polymer systems has attracted considerable attention due to wide range of applications, i.e. controlled drug delivery and release systems, diagnostics, tissue engineering and 'smart' optical systems, as well as biosensors, microelectromechanical systems, coatings, and textiles. Among the types of stimuli for this dissertation temperature, pH and reactive oxygen species (ROS) responsive polymer systems were studied. In case of thermoresponsive polymers, when polymer chains are molecularly dissolved in a good solvent, changes (increasing or decreasing) of temperature result in insolubility (globular nanoparticles formation) of polymer chains, called temperature induced phase-separation. pH responsive polymers change properties such as: solubility, volume (gels),...
Laser spectroscopy of materials for spintronics
Brajer, Martin ; Němec, Petr (advisor)
In these diploma thesis magnetically ordered materials are studied with the prospect of their application in spintronics. Specifically, we investigated metallic alloy FeRh, which undergoes a magnetic phase transition from antife- romagnetic phase to feromagnetic one around 100◦ C. This phenomenon can be readily used in memory devices. Laser spectroscopy is used as a nondestructive method without need of any electrical contacts. Magnetic properties of FeRh are studied by magnetooptical effects including quadratic magnetic linear dichroism. The measured polarization rotations are of the order of miliradians, therefore, the detection is realized by an optical bridge. At first, we concentrated on discrimina- ting of various magnetooptical effects from each other. The second part is focused on the phase transition induced by different means. Firstly, by heating the whole sample, secondly by illuminating the sample locally by continuous laser.
Spectroscopic Study of the Dynamical Behavior and Interactions in Supramolecular and Macromolecular Systems
Radecki, Marek ; Hanyková, Lenka (advisor)
Title: Spectroscopic Study of the Dynamical Behavior and Interactions in Supramolecular and Macromolecular Systems Author: Marek Radecki Department: Department of Macromolecular Physics Supervisor: Doc. RNDr. Lenka Hanyková, Dr., Department of Macromolecular Physics Abstract: In this thesis, the temperature-induced phase transition in liner polymer solutins and hydrogels of semi-interpenetrating (SIPNs) and interpenetrating (IPNs) polymer networks was studied with respect to various composition, network architecture and procedure. Thermoresponsive linear polymers based on poly(vinyl methyl ether) (PVME) in water and with terc-buthyl based additives, IPNs of polyacrylamide (PAAm), poly(N -isopropylacrylamide) (PNIPAm), poly(N - vinylcaprolactam) (PVCL) and IPNs and SIPNs of poly(N,N -diethylacrylamide) (PDEAAm) were investigated by the methods of nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), optical microscopy (OM) and swelling experiments. The effect of polymer concentration and presence of additives on the dynamics during the phase separation as well as interactions between the water and the polymer in aqueous solutions of PVME and PVME/additives were established. The increasing content of hydrophilic PAAm component in SIPNs and IPNs shifts the transition toward...
Laser spectroscopy of materials for spintronics
Brajer, Martin ; Němec, Petr (advisor)
In these diploma thesis magnetically ordered materials are studied with the prospect of their application in spintronics. Specifically, we investigated metallic alloy FeRh, which undergoes a magnetic phase transition from antife- romagnetic phase to feromagnetic one around 100◦ C. This phenomenon can be readily used in memory devices. Laser spectroscopy is used as a nondestructive method without need of any electrical contacts. Magnetic properties of FeRh are studied by magnetooptical effects including quadratic magnetic linear dichroism. The measured polarization rotations are of the order of miliradians, therefore, the detection is realized by an optical bridge. At first, we concentrated on discrimina- ting of various magnetooptical effects from each other. The second part is focused on the phase transition induced by different means. Firstly, by heating the whole sample, secondly by illuminating the sample locally by continuous laser.

National Repository of Grey Literature : 23 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.